

Indian Ocean acidification and its driving mechanisms over the last four decades (1980–2019)

Kunal Chakraborty, Ph.D. Indian National Centre for Ocean Information Services (INCOIS), Ministry of Earth Sciences, Hyderabad, India (kunal.c@incois.gov.in)

OceanPredict's Marine Ecosystem Analysis and Prediction Task Team Meeting November 06, 2024 (on line)

Outline of the Presentation

- Brief introduction to INCOIS
- \checkmark Indian Ocean Acidification: What we know
- **Example 18 of the Presentation

Fintroduction to INCOIS

An Ocean Acidification: What we know

 Present status

An Ocean Cycle Assessment and Process

 Regional Ocean Models** Martin Controllering Controllering Cycle Assessment and Processes Phase 2 (RECCAPv2)

Freshold Carbon Cycle Assessment and Processes Phase 2 (RECCAPv2)

Freshold Carbon Cycle Assessment and Processes Phase 2 (RECCAPv2)

F orce of the Presentation

Eintroduction to INCOIS

In Ocean Acidification: What we know

- Present status

Conal Carbon Cycle Assessment and Process

- Regional Ocean Models

In-Ecosystem Modeling System developed at

- Ev V REgional Carbon Cycle Assessment and Processes Phase 2 (RECCAPv2)

- Regional Ocean Models

V Ocean-Ecosystem Modeling System developed at INCOIS

- Evaluation

V Analysis of Indian Ocean Acidification in different sub
- Ocean-Ecosystem Modeling System developed at INCOIS **Example 18 The Presentation**
 Example 18 Introduction to INCOIS
 Example 2018
 Example 2019 Algorithm Cycle Assessment and Process
 Example 2019 Algorithm Cycle Assessment and Process
 Exaluation
 Exaluation
 In Ocean Acidification: What we know

- Present status

ional Carbon Cycle Assessment and Process

- Regional Ocean Models

In-Ecosystem Modeling System developed at

- Evaluation

ysis of Indian Ocean Acidification in dif onal Carbon Cycle Assessment and Process
- Present status
ional Carbon Cycle Assessment and Process
- Regional Ocean Models
n-Ecosystem Modeling System developed at
- Evaluation
ysis of Indian Ocean Acidification in differ
- Analysis of Indian Ocean Acidification in different sub-regions
	-
-
- \checkmark Summary and Conclusions

Ocean Observation Network

INCOIS established 3 Groundstation's to meet the in-house operational advisory services. Operational Remote sensing data reception and services

Acquiring AVHRR (Metop-1, Metop-2, NOAA-18 & NOAA-19), VIIRS (Soumi-NPP), MODIS (AQUA & TERRA)&OCM(Oceansat-2).

International Interface

Indian Ocean acidification and its driving mechanisms

Ocean Acidification

- **Ocean Acidification**

The ocean plays a vital role in mitigating global climate change by sequestering ~30%

of anthropogenically emitted CO_2 per year $(2.4 \pm 0.5 \text{ GfCyr}^{-1})$; Le-Quéré et al., 2018). **OF ANTICE ANTIFICATE:**

The ocean plays a vital role in mitigating global climate change by sequestering ~30%

of anthropogenically emitted CO₂ per year (2.4 ± 0.5 GtCyr⁻¹; Le- Quéré et al., 2018).

The tropical Indi
- **The ocean plays a vital role in mitigating global climate change by sequestering ~30%**

of anthropogenically emitted CO₂ per year $(2.4 \pm 0.5 \text{ GtCyr}^{-1})$; Le-Quéré et al., 2018).
 \triangleright The tropical Indian Ocean (IO) **Example 18 Acidification**

The ocean plays a vital role in mitigating global climate change by sequestering ~30%

of anthropogenically emitted CO₂ per year $(2.4 \pm 0.5 \text{ GfCyr}^{-1})$; Le- Quéré et al., 2018).

The tropica 2004).
- **Deean Acidification**

The ocean plays a vital role in mitigating global climate change by sequestering ~30%

of anthropogenically emitted CO_2 per year $(2.4 \pm 0.5 \text{ GtCyr}^{-1})$; Le-Quéré et al., 2018).

> The tropical In **INCOIS**

e by sequestering ~30%

Le-Quéré et al., 2018).

g 16.6 \pm 5.1 petagrams

cean sink (Sabine et al.,

into oceans leads to a

hich affects the marine **EXECUTE:**

The ocean plays a vital role in mitigating global climate change by sequestering ~30%

of anthropogenically emitted CO₂ per year $(2.4 \pm 0.5 \text{ GtCyr}^{-1})$; Le-Quéré et al., 2018).

The tropical Indian Ocean (I The ocean plays a vital role in mitigating global c
of anthropogenically emitted CO_2 per year (2.4 ± 0.000)
anthropogenical Indian Ocean (IO) alone contributed
anthropogenic carbon, amounting a 16% of the g
2004).
Th
- of anthropogenically emitted CO₂ per year (2.4 \pm 0.5 GtCyr⁻¹; Le- Quéré et al., 2018).

> The tropical Indian Ocean (IO) alone contributed to storing 16.6 \pm 5.1 petagrams anthropogenic carbon, amounting a 16% of The tropical Indian Ocean (IO) alone contributed to storing 16.6 ± 5.1 petagrams anthropogenic carbon, amounting a 16% of the global total ocean sink (Sabine et al., 2004).
The significant uptake of anthropogenic atm The tropical Indian Ocean (IO) alone contributed to storing 16.6 \pm 5.1 petagrams anthropogenic carbon, amounting a 16% of the global total ocean sink (Sabine et al., 2004).
The significant uptake of anthropogenic atmos 2005).

Indian Ocean Acidification: What we know

- **COLUTE:**

The trends of the western Indian Ocean acidity is quite alarming (0.07 pH units in last 50 years

(1960-2010); Sreeush et al., 2019).
 \triangleright For the period 1991-2011, Lauyset et al. (2015) suggested that the p an Ocean Acidification: What we know

The trends of the western Indian Ocean acidity is quite alarming (0.07)

(1960-2010); Sreeush et al., 2019).

For the period 1991-2011, Lauvset et al. (2015) suggested that the pH

-0.
- **For the period 1991-2011, Lauvset et al. (2015)** suggested that the pH trend would be up to $-0.027/\text{dec}$ ade in the Indian Ocean acidity is quite alarming (0.07 pH units in last 50 years (1960-2010); Sreeush et al., 20 21 **a Cream Acidification:** What we know

The trends of the western Indian Ocean acidity is quite alarming (0.07 pH units in last 50 years

(1960-2010); Sreeush et al., 2019).

For the period 1991-2011, Lauvset et al. (
- **IN COSET A recent Study, Chau et al. (2015)**

IN COSET (1960-2010); Sreeush et al., 2019).

ID For the period 1991-2011, Lauvset et al. (2015) suggested that the pH trend would be up to
 $-0.027/\text{decade}$ in the Indian Ocea
- **COMPAGE FOR ACTRIGE FOR THE FEAT ACT ACT THE FEAT ACT THE FEAT ACT (1960-2010):** Srecush et al., 2019).

The frends of the western Indian Ocean acidity is quite alarming (0.07 pH units in last 50 years
 $>$ For the perio **EXECT:** The trends of the western Indian Ocean acidity is quite alarming $(0.07 \text{ pH units in last 50 years})$

The trends of the western Indian Ocean acidity is quite alarming $(0.07 \text{ pH units in last 50 years})$

For the period 1991-2011, Lauvset et al. The trends of the western Indian Ocean acidity is quite alarming (0.07 pH units in last 50 years
(1960-2010); Sreeush et al., 2019).
For the period 1991-2011, Lauvset et al. (2015) suggested that the pH trend would be up t
- (1960-2010); Sreeush et al., 2019).
 \triangleright For the period 1991-2011, Lauvset et al. (2015) suggested that the pH trend would be up to
 $-0.027/\text{decade}$ in the Indian Ocean, but this is subject to uncertainty (based on a fe For the period 1991-2011, Lauvset et al. (2015) suggested that the pH trend would be up to -0.027/decade in the Indian Ocean, but this is subject to uncertainty (based on a few data).
In a recent study, Chau et al. (2024) For the period 1991-2011, Lauvset et al. (2015) suggested that the pH trend would be up to -0.027/decade in the Indian Ocean, but this is subject to uncertainty (based on a few data).
In a recent study, Chau et al. (2024) The arecent study, Chau et al. (2024) reported a lower rate of decrease of the IO pH by -0.017 ±

0.001/decade for the period 1985-2019.

> Interestingly, in another study, Ma et al. (2023) estimated a further lower rate In a recent study, Chau et al. (2024) reported a lower rate of decrease of the IO pH by -0.0
0.001/decade for the period 1985-2019.
Interestingly, in another study, Ma et al. (2023) estimated a further lower rate of decrea
-

- RECCAPv2 Indian Ocean

> The international carbon cycle research community r

comprehensive assessment it has ever undertaken: the RH The international carbon cycle research community recently concluded the largest, most

⇒ The international carbon cycle research community recently concluded the largest, most

comprehensive assessment it has ever undert $\begin{array}{ll} \text{ECCAPv2} - \text{Indian Ocean} \ \text{The international carbon cycle research community recently concluded the largest, most comprehensive assessment it has ever undertaken: the Regional Carbon Cycle Assessment and Processes Phase 2 (RECCAPv2).} \ \text{Within the ocean-specific part of RECCAPv2, a global consortium of partners aimed to better.} \end{array}$ $\text{ECCAPv2} - \text{Indian Ocean}$
The international carbon cycle research community rece
comprehensive assessment it has ever undertaken: the REgic
Processes Phase 2 (RECCAPv2).
Within the ocean-specific part of RECCAPv2, a global cons

- NECCAPv2 Indian Ocean

→ The international carbon cycle research community recently concluded the largest, most

comprehensive assessment it has ever undertaken: the REgional Carbon Cycle Assessment and

Processes Phase $\begin{array}{ll}\n\text{CCCAPv2} - \text{Indian Ocean}\n\end{array}$ The international carbon cycle research community recently concluded the largest, most

comprehensive assessment it has ever undertaken: the REgional Carbon Cycle Assessment and

Processes **CCCAPv2 – Indian Ocean**

The international carbon cycle research community recently concluded the largest, most

comprehensive assessment it has ever undertaken: the REgional Carbon Cycle Assessment and

Processes Phase **INCOLART ACT THE EXECT APV2** - Indian Ocean
 \triangleright The international carbon cycle research community recently concluded the largest, most

comprehensive assessment it has ever undertaken: the REgional Carbon Cycle Asses **ECCAPv2 – Indian Ocean**
 **The international carbon cycle research community recently concluded the largest, most

comprehensive assessment it has ever undertaken: the REgional Carbon Cycle Assessment and

Processes Phase** ighter international carbon cycle research community recently concluded the largest, most

comprehensive assessment it has ever undertaken: the REgional Carbon Cycle Assessment and

Processes Phase 2 (RECCAPv2).

Withi Processes Phase 2 (RECCAPv2).
 \triangleright Within the ocean-specific part of RECCAPv2, a global consortium of partners aimed to better

quantify and understand the CO2 fluxes into and out of the ocean, the associated changes i Within the ocean-specific part of RECCAPv2, a global conductively

within the ocean-specific part of RECCAPv2, a global co

quantify and understand the CO2 fluxes into and out of

ocean carbon storage beneath the sea surfa A regional nodes that the spatial and temporal variability of CO2 fluxes is better captured variable of simulating Indian Ocean-specific part of RECCAPv1 that none of the global models capable of simulating Indian Ocean c
-
-
- by the high-resolution regional models than global models (Sarma et al., 2013).
It was concluded within the ocean-specific part of RECCAPv1 that none of the global models capable of simulating Indian Ocean carbon cycle (Sa
-

INCOIS BIO Modeling System based on ROMS

- o BOBOA RAMA mooring at 15° N, 90° E (Sutton et al., 2014)
- o SOCAT (Baker et al., 2022)
-
- o CMEMS-LSCE-FFNN (CMEMS) (Chau et al., 2022)

Model Configuration

Resolution

Horizontal : $1/12^0$ (\sim 9.5 km), Vertical: 40 sigma levels.

Initial Condition

Model Configuration

Resolution

Horizontal : 1/12⁰ (~ 9.5 km), Vertical: 40 sigma levels.

Initial Condition

Physical state variables - GFDL's ECDA system

simulated reanalysis data.

Biological state variables (NO3, C

Model Configuration

Resolution

Horizontal : 1/12⁰ (~ 9.5 km), Vertical: 40 sigma levels.

Initial Condition

Physical state variables - GFDL's ECDA system

simulated reanalysis data.

Biological state variables (NO3, C Model Configuration

Resolution

Horizontal : 1/12⁰ (~ 9.5 km), Vertical: 40 sigma levels.

Initial Condition

Physical state variables - GFDL's ECDA system

simulated reanalysis data.

Biological state variables (NO3, C Model Configuration

Resolution

Horizontal : 1/12⁰ (~ 9.5 km), Vertical: 40 sigma levels.

Initial Condition

Physical state variables - GFDL's ECDA system

simulated reanalysis data.

Biological state variables (NO3, C Model Configuration

Resolution

Horizontal : 1/12⁰ (~ 9.5 km), Vertical: 40 sigma levels.

Initial Condition

Physical state variables - GFDL's ECDA system

simulated reanalysis data.

Biological state variables (NO3, C Model Configuration

Resolution

Horizontal : 1/12⁰ (~ 9.5 km), Vertical: 40 sigma levels.

Initial Condition

Physical state variables - GFDL's ECDA system

simulated reanalysis data.

Biological state variables (NO3, C Model Configuration

Horizontal : 1/12⁰ (~ 9.5 km), Vertical: 40 sigma levels.

• Initial Condition

• Physical state variables - GFDL's ECDA system

simulated reanalysis data.

• Biological state variables (NO3, Chlorop Model Configuration

Horizontal : $1/12^0$ (\sim 9.5 km), Vertical: 40 sigma levels.

Initial Condition

Physical state variables - GFDL's ECDA system

simulated reanalysis data.

Biological state variables (NO3, Chloroph Fortheast 1/12⁰ (~9.5 km), Vertical: 40 sigma levels.

• Initial Condition

• Physical state variables - GFDL's ECDA system

simulated reanalysis data.

• Biological state variables (NO3, Chlorophyll-a, O2, etc.)

- Cim • Initial Condition

Physical state variables - GFDL's ECDA system

simulated reanalysis data.

Biological state variables (NO3, Chlorophyll-a, O2, etc.)

- Cimatological state of January generated from the

climatological Freshwater analysis data.

Freshwater simulated reanalysis data.

Biological state variables (NO3, Chlorophyll-a, O2, etc.)

- Cimatological state of January generated from the

climatological run of the model.

The model Biological state variables (NO3, Chlorophyll-a, O2, etc.)

- Cimatological state of January generated from the

climatological run of the model.

The model state of the carbon state variables - Global

Ocean Data Product (

o SOCAI (Baker et al., 2022)
○ Ocean SODA-ETHZv2023 (SODA) (Ma et al., 2023) Reanalysis product JRA55-do (Tsujino et al., 2018)

OTTM Global model simulated outputs are also analyzed.

SOCAT Measurements & ROMS Simulation

Model Evaluation

INCOIS

Model Evaluation

(2021)

Decomposition analysis

Example 5
The spatial and temporal variability of pH are primarily governed by the changes in DIC, ALK, SST, and SSS.
The component form of total variability of surface ocean pCO2 can be expressed in the following form (**Example 5**

The spatial and temporal variability of pH are primarily governed by the changes in DIC, ALK, SST, and SSS.

The component form of total variability of surface ocean pCO2 can be expressed in the following for **Decomposition analysis**

The spatial and temporal variability of pH are primarily governed by the chan

The component form of total variability of surface ocean pCO2 can be express

Gruber, 2006; Takahashi et al., 2014)

Decomposition analysis
 INCOIS

The spatial and temporal variability of pH are primarily governed by the changes in DIC, ALK, SST, and SSS.

The component form of total variability of surface ocean pCO2 can be express The component form of total variability of surface ocean pCO2 can be expressed in the following form (Sarmiento & Gruber, 2006; Takahashi et al., 2014)
 $\frac{dX}{dt} = \frac{\partial X}{\partial DIC} \frac{dDIC}{dt} + \frac{\partial X}{\partial AK} \frac{dALK}{dt} + \frac{\partial X}{\partial SS} \frac{dSST}{$ **d**etremding the SST (of each model grid) while keeping all other inputs in CHRL referred to the chinages in CHRL **The right side of the equation shows the temporal variation of pH.**

• The right side of the equation corr

-
-
-
-
- variability.

Decomposition Analysis

ROMS & Observations-based Data Products

- **EXECUTE:**
• A right shift in the peak of SST in 2019
from 1985 is seen in both ROMS and
OTTM as well as in CMEMS-LSCE-
FFNN and OceanSODA data products **EXECUTE IS SET AT A FIGHT SET AND SET ASSESS IS SEEN IN A FIGURE 1987 IS SEEN AND SET AND ROMS CONCRETE THE ANDER SET AND ROMS AND ROMS AND ROMS** A right shift in the peak of SST in 2019
from 1985 is seen in both ROMS and
OTTM as well as in CMEMS-LSCE-
FFNN and OceanSODA data products
CMEMS-LSCE-FFNN and ROMS
suggest a drop in mean sea-surface pH A right shift in the peak of SST in 2019
from 1985 is seen in both ROMS and
OTTM as well as in CMEMS-LSCE-
FFNN and OceanSODA data products
CMEMS-LSCE-FFNN and ROMS
suggest a drop in mean sea-surface pH
value between 1985
- A right shift in the peak of SST in 2019
from 1985 is seen in both ROMS and
OTTM as well as in CMEMS-LSCE-
FFNN and OceanSODA data products
• CMEMS-LSCE-FFNN and ROMS
suggest a drop in mean sea-surface pH
value between 1 **Solution 1985**
A right shift in the peak of SST in 2019
from 1985 is seen in both ROMS and
OTTM as well as in CMEMS-LSCE-
FFNN and OceanSODA data products
CMEMS-LSCE-FFNN and ROMS
suggest a drop in mean sea-surface pH
val **Example 1987**

A right shift in the peak of SST in 2019

from 1985 is seen in both ROMS and

OTTM as well as in CMEMS-LSCE-

FFNN and OceanSODA data products

CMEMS-LSCE-FFNN and ROMS

suggest a drop in mean sea-surface p **EXECT SET ANCREAT SET AND A right shift in the peak of SST in 2019**
from 1985 is seen in both ROMS and
OTTM as well as in CMEMS-LSCE-
FFNN and OceanSODA data products
CMEMS-LSCE-FFNN and ROMS
suggest a drop in mean sea-su **COCET ANTIFUT ANTIFUT AND AND AND SURVEY AND AND SET AND AND SURVEY AND AND SURVEY AND ARROW SURGET FRIN AND SURGET FRIN and ROMS suggest a drop in mean sea-surface pH value between 1985 and 2019 by 0.06, whereas a drop b**
- pCO₂ seen from ROMS, OceanSODA,
and CMEMS-LSCE-FFNN is almost **Solution 1985**
 i shift in the peak of SST in 2019

1985 is seen in both ROMS and

1 as well as in CMEMS-LSCE-

and OceanSODA data products
 $MS\text{-}LSCE\text{-}FFNN$ and ROMS

ta drop in mean sea-surface pH

between 1985 and 2 A right shift in the peak of SST in 2019
from 1985 is seen in both ROMS and
OTTM as well as in CMEMS-LSCE-
FFNN and OceanSODA data products
CMEMS-LSCE-FFNN and ROMS
suggest a drop in mean sea-surface pH
value between 1985 A right shift in the peak of SST in 2019
from 1985 is seen in both ROMS and
OTTM as well as in CMEMS-LSCE-
FFNN and OceanSODA data products
CMEMS-LSCE-FFNN and ROMS
suggest a drop in mean sea-surface pH
value between 1985 in 2019
In 2019
ISCE-
LSCE-
oducts
ROMS
face pH
py 0.06,
n from
surface
surface
SODA,
almost
rise (as
in the
ce DI A right shift in the peak of SST in 2019
from 1985 is seen in both ROMS and
OTTM as well as in CMEMS-LSCE-
FFNN and OceanSODA data products
CMEMS-LSCE-FFNN and ROMS
suggest a drop in mean sea-surface pH
value between 1985 • A right shift in the peak of SST in 2019
from 1985 is seen in both ROMS and
OTTM as well as in CMEMS-LSCE-
FFNN and OceanSODA data products
• CMEMS-LSCE-FFNN and ROMS
suggest a drop in mean sea-surface pH
value between FFNN and OceanSODA data products

CMEMS-LSCE-FFNN and ROMS

suggest a drop in mean sea-surface pH

value between 1985 and 2019 by 0.06,

whereas a drop by 0.05 is seen from

OceanSODA and OTTM.

Interestingly, the rise in CMEMS-LSCE-FFNN and ROMS
suggest a drop in mean sea-surface pH
value between 1985 and 2019 by 0.06,
whereas a drop by 0.05 is seen from
OceanSODA and OTTM.
Interestingly, the rise in sea-surface
pCO₂ seen from ROMS, Oce CMEMS-LSCE-FFNN and ROMS
suggest a drop in mean sea-surface pH
value between 1985 and 2019 by 0.06,
whereas a drop by 0.05 is seen from
OceanSODA and OTTM.
Interestingly, the rise in sea-surface
pCO₂ seen from ROMS, Oce suggest a drop in mean sea-surface pH
value between 1985 and 2019 by 0.06,
whereas a drop by 0.05 is seen from
OceanSODA and OTTM.
Interestingly, the rise in sea-surface
pCO₂ seen from ROMS, OceanSODA,
and CMEMS-LSCE-FFN
-

- **EXECUTE:**

 Left Fig. shows a negative spatial pattern of pH anomalies, but

right Fig. shows a negative spatial pattern of pH anomalies in

the east and a positive in the west.

 The corresponding PC-1 shows an invers
-
-
-
-
-
-
-
-

Indian Ocean Acidification and its driving mechanisms

pH Trend: AS pH Trend: BoB -0.01 -0.01 $\frac{6}{5}$ -0.02 **F** in Association 2005 2015 **F** in As and to an **and ISO**
 $\frac{6}{5}$ -0.03 **F** in Association 2005 2015 **PH** Trend i EO
 $\frac{6}{5}$ -0.02 **F** in As and the state of pH in AS, BoB, EIO, and IO regions.
 Figur $\frac{4}{5}$ -0.01 **a** = 0.03 **b** = 0.03 **b** = 0.04 **b** = 0.04 **c** =

-
- enhancement of Indian Ocean acidification.

Summary & Conclusions

- ummary & Conclusions

The analysis indicates that the rate of change of declining pH in the Arabian Sea (Bay

of Bengal) is -0.014 ± 0.002 (-0.014 ± 0.001) unit/decade.

Note that of discolved incursation scales unimority of Bengal) is -0.014 ± 0.002 (-0.014 ± 0.001) unit/decade.
The analysis indicates that the rate of change of declining pH in the Arabian Sea (
of Bengal) is -0.014 ± 0.002 (-0.014 ± 0.001) unit/decade.
The trend of dissol
- **The trend of dissolved inorganic carbon primarily drives an increasing ocean**
 \triangleright The trend of dissolved inorganic carbon primarily drives an increasing ocean

acidification trend in the Indian Ocean.
 \triangleright The inc amary & Conclusions

The analysis indicates that the rate of change of declining pH in the Ara

of Bengal) is -0.014 ± 0.002 (-0.014 ± 0.001) unit/decade.

The trend of dissolved inorganic carbon primarily drives an inc

- **The analysis indicates that the rate of change of declining pH in the Arabian Sea (Bay**
 \triangleright The analysis indicates that the rate of change of declining pH in the Arabian Sea (Bay
 \triangleright The trend of dissolved inorga **EXECT THE SET OF THE SET OF SET OF THE SET OF SET OF THE SET OF SET OF SET OF SET OF SET OF SE** nmary & Conclusions

The analysis indicates that the rate of change of declinion

of Bengal) is -0.014 \pm 0.002 (-0.014 \pm 0.001) unit/decade.

The trend of dissolved inorganic carbon primarily

acidification trend in The analysis indicates that the rate of change of declining pH in the Arabian Sea (Bay
of Bengal) is -0.014 \pm 0.002 (-0.014 \pm 0.001) unit/decade.

The trend of dissolved inorganic carbon primarily drives an increasi The threating is -0.014 ± 0.002 (-0.014 ± 0.001) unit/decade.

The trend of dissolved inorganic carbon primarily drives an increasing ocean

acidification trend in the Indian Ocean.

The increasing anthropogenic CO₂ El Nino and positive Indian Ocean Dipole events lead to an enhancement of the Indian Ocean acidification in AS (BoB) whereas ocean warming controls 14.4% (13.4%) of pH trends in AS (BoB).
 \geq The changes in TA contribu The increasing anthropogenic CO₂ uptake by the (94.5%) of pH trends in AS (BoB) whereas ocean wa
pH trends in AS (BoB).
The changes in TA contribute to enhancing the p
contrast, it has a buffering effect which results in
- -5.4% .
-

Publication Details

Global **Biogeochemical Cycles**

RESEARCH ARTICLE

10.1029/2024GB008139

Key Points:

- The Indian Ocean pH is decreasing at an average rate of 0.015 dec⁻¹ from 1980 to 2019
- The trend of dissolved inorganic carbon primarily drives an increasing ocean acidification trend in the Indian Ocean
- El Nino and positive Indian Ocean Dipole events lead to an enhancement of the Indian Ocean acidification

Supporting Information:

Supporting Information may be found in the online version of this article.

Correspondence to:

K. Chakrabortv. kunal.c@incois.gov.in

Indian Ocean Acidification and Its Driving Mechanisms Over the Last Four Decades (1980–2019)

Kunal Chakraborty¹ ■, A. P. Joshi¹ ■, Prasanna Kanti Ghoshal^{1,2} ■, Balaji Baduru^{1,3} ■, Vinu Valsala³ . V. V. S. S. Sarma⁴ . Nicolas Metzl⁵ . Marion Gehlen⁶ . Frédéric Chevallier⁶ ^D, and Claire Lo Monaco⁵ D

¹Indian National Center for Ocean Information Services, Ministry of Earth Sciences, Hyderabad, India, ²Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, India, ³Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India, ⁴CSIR-National Institute of Oceanography, Regional Center, Visakhapatnam, India, ⁵Laboratoire LOCEAN/IPSL, Sorbonne Université-CNRS-IRD-MNHN, Paris, France, ⁶Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL, CEA-CNRS-UVSO, Université Paris-Saclay, Gif-sur-Yvette, France

Abstract This paper aims to study the changes in the Indian Ocean seawater pH in response to the changes in sea-surface temperature, sea-surface salinity, dissolved inorganic carbon (DIC), and total alkalinity (ALK) over the period 1980–2019 and its driving mechanisms using a high-resolution regional model outputs. The analysis indicates that the rate of change of declining pH in the Arabian Sea (AS), the Bay of Bengal (BoB), and the Equatorial Indian Ocean (EIO) is -0.014 ± 0.002 , -0.014 ± 0.001 , and -0.015 ± 0.001 unit dec⁻¹, respectively. Both in AS and BoB (EIO), the highest (lowest) decadal DIC trend is found during 2000–2009.

Acknowledgement

A. P. Joshi, Prasanna Kanti Ghoshal, Balaji Baduru, Vinu Valsala, V. V. S. S. Sarma,

- Indian National Center for Ocean Information Services, Ministry of Earth Sciences, Hyderabad, India
- Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, India
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
- CSIR-National Institute of Oceanography, Regional Center, Visakhapatnam, India

-
- **CKNOWLEdgement**

A. P. Joshi, Prasanna Kanti Ghoshal, Balaji Baduru, Vinu Valsala, V. V. S. S. Sarma,

 Indian National Center for Ocean Information Services, Ministry of Earth Sciences, Hyderabad, Inc.

 Taculty of Oce • Laboratoire LOCEAN/IPSL, Sorbonne Universit´e-CNRS-IRD-MNHN, Paris, 75005, France Sachay, 91191 Gif-sur-Yerte, France Sachay, 1913
• Ladian Institute of Tropical Meteorology, Kerala University of Farth Sciences, Hyderaba • Laboratoire des Sciences du Climat Chaptaire des Sciences, Ministry of Earth Sciences, Hyderabad, India
• Indian National Center for Ocean Information Services, Ministry of Earth Sciences, Hyderabad, India
• Faculty of O Saclay, 91191 Gif-sur-Yvette, France

Goverment Of India

- **EXECUTE:**
 EXECUTE:

EXECUTE://www.nodc.noaa.gov/ocads/oceans/Moorings/BOBOA.html.

EXECUTE:

For SOCAT data is obtained from https://www.socat.info/index.php/data-access/ https://www.nodc.noaa.gov/ocads/oceans/Moorings/BOBOA.html. **The Society of the SOCAT data is obtained from https://www.socat.info/index.php/data-access/

> The SOCAT data is obtained from https://www.socat.info/index.php/data-access/

> The OceanSODA data could be obtained from h**
-
- The OceanSODA data could be obtained from https://www .ncei .noaa .gov/data/oceans/ncei/ocads/data/0220059/.
- Pen Research

→ BOBOA mooring data is available at

https://www.nodc.noaa.gov/ocads/occans/Moorings/BOBOA.html.

→ The SOCAT data is obtained from https://www.socat.info/index.php/data-access/

→ The OceanSODA data could https://essd.copernicus.org/preprints/essd-2023-146/essd-2023-146.pdf
- ROBOA mooring data is available at

https://www.nodc.noaa.gov/ocads/oceans/Moorings/BOBOA.html.

 The SOCAT data is obtained from https://www.socat.info/index.php/data-access/

 The OceanSODA data could be obtain repository of https://www.node.noaa.gov/ocads/oceans/Moorings/BOBOA.html.
The SOCAT data is obtained from https://www.socat.info/index.php/data-access/
The OceanSODA data could be obtained from https://www .ncci .noaa
.gov kunal.c@incois.gov.in.

Thank You for your attention!